Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.008
Filtrar
1.
Transl Psychiatry ; 14(1): 184, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600070

RESUMO

The prevalence of Alzheimer's disease (AD) is increasing as the population ages, and patients with AD have a poor prognosis. However, knowledge on factors for predicting the survival of AD remains sparse. Here, we aimed to systematically explore predictors of AD survival. We searched the PubMed, Embase and Cochrane databases for relevant literature from inception to December 2022. Cohort and case-control studies were selected, and multivariable adjusted relative risks (RRs) were pooled by random-effects models. A total of 40,784 reports were identified, among which 64 studies involving 297,279 AD patients were included in the meta-analysis after filtering based on predetermined criteria. Four aspects, including demographic features (n = 7), clinical features or comorbidities (n = 13), rating scales (n = 3) and biomarkers (n = 3), were explored and 26 probable prognostic factors were finally investigated for AD survival. We observed that AD patients who had hyperlipidaemia (RR: 0.69) were at a lower risk of death. In contrast, male sex (RR: 1.53), movement disorders (including extrapyramidal signs) (RR: 1.60) and cancer (RR: 2.07) were detrimental to AD patient survival. However, our results did not support the involvement of education, hypertension, APOE genotype, Aß42 and t-tau in AD survival. Our study comprehensively summarized risk factors affecting survival in patients with AD, provided a better understanding on the role of different factors in the survival of AD from four dimensions, and paved the way for further research.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Doença de Alzheimer/genética , Biomarcadores , Fatores de Risco , Genótipo , Estudos de Casos e Controles , Peptídeos beta-Amiloides/genética , Proteínas tau/genética
2.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504535

RESUMO

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Medicamentos de Ervas Chinesas , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular , Donepezila , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Vermelho Congo , Camundongos Endogâmicos C57BL , Aspirina , Modelos Animais de Doenças
4.
EMBO J ; 43(6): 887-903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396302

RESUMO

Two phase-III clinical trials with anti-amyloid peptide antibodies have met their primary goal, i.e. slowing of Alzheimer's disease (AD) progression. However, antibody therapy may not be the optimal therapeutic modality for AD prevention, as we will discuss in the context of the earlier small molecules described as "γ-secretase modulators" (GSM). We review here the structure, function, and pathobiology of γ-secretases, with a focus on how mutations in presenilin genes result in early-onset AD. Significant progress has been made in generating compounds that act in a manner opposite to pathogenic presenilin mutations: they stabilize the proteinase-substrate complex, thereby increasing the processivity of substrate cleavage and altering the size spectrum of Aß peptides produced. We propose the term "γ-secretase allosteric stabilizers" (GSAS) to distinguish these compounds from the rather heterogenous class of GSM. The GSAS represent, in theory, a precision medicine approach to the prevention of amyloid deposition, as they specifically target a discrete aspect in a complex cell biological signalling mechanism that initiates the pathological processes leading to Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/genética , Medicina de Precisão , Presenilinas/uso terapêutico , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética
5.
Age Ageing ; 53(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342754

RESUMO

Alzheimer's Disease (ad) is the most common cause of dementia, and in addition to cognitive decline, it directly contributes to physical frailty, falls, incontinence, institutionalisation and polypharmacy in older adults. Increasing availability of clinically validated biomarkers including cerebrospinal fluid and positron emission tomography to assess both amyloid and tau pathology has led to a reconceptualisation of ad as a clinical-biological diagnosis, rather than one based purely on clinical phenotype. However, co-pathology is frequent in older adults which influence the accuracy of biomarker interpretation. Importantly, some older adults with positive amyloid or tau pathological biomarkers may never experience cognitive impairment or dementia. These strides towards achieving an accurate clinical-biological diagnosis are occurring alongside recent positive phase 3 trial results reporting statistically significant effects of anti-amyloid Disease-Modifying Therapies (DMTs) on disease severity in early ad. However, the real-world clinical benefit of these DMTs is not clear and concerns remain regarding how trial results will translate to real-world clinical populations, potential adverse effects (including amyloid-related imaging abnormalities), which can be severe and healthcare systems readiness to afford and deliver potential DMTs to appropriate populations. Here, we review recent advances in both clinical-biological diagnostic classification and future treatment in older adults living with ad. Advocating for access to both more accurate clinical-biological diagnosis and potential DMTs must be done so in a holistic and gerontologically attuned fashion, with geriatricians advocating for enhanced multi-component and multi-disciplinary care for all older adults with ad. This includes those across the ad severity spectrum including older adults potentially ineligible for emerging DMTs.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/terapia , Disfunção Cognitiva/psicologia , Tomografia por Emissão de Pósitrons , Biomarcadores , Fenótipo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382624

RESUMO

Accumulation of insoluble deposits of amyloid ß-peptide (Aß), derived from amyloid precursor protein (APP) processing, represents one of the major pathological hallmarks of Alzheimer's disease (AD). Perturbations in APP transport and hydrolysis could lead to increased Aß production. However, the precise mechanisms underlying APP transport remain elusive. The GDP dissociation inhibitor2 (GDI2), a crucial regulator of Rab GTPase activity and intracellular vesicle and membrane trafficking, was investigated for its impact on AD pathogenesis through neuron-specific knockout of GDI2 in 5xFAD mice. Notably, deficiency of GDI2 significantly ameliorated cognitive impairment, prevented neuronal loss in the subiculum and cortical layer V, reduced senile plaques as well as astrocyte activation in 5xFAD mice. Conversely, increased activated microglia and phagocytosis were observed in GDI2 ko mice. Further investigation revealed that GDI2 knockout led to more APP co-localized with the ER rather than the Golgi apparatus and endosomes in SH-SY5Y cells, resulting in decreased Aß production. Collectively, these findings suggest that GDI2 may regulate Aß production by modulating APP intracellular transport and localization dynamics. In summary, our study identifies GDI2 as a pivotal regulator governing APP transport and process implicated in AD pathology; thus highlighting its potential as an attractive pharmacological target for future drug development against AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/genética , Neurônios/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina
7.
Free Radic Biol Med ; 212: 10-21, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101587

RESUMO

Transplantation of mitochondria derived from mesenchymal stem cells (MSCs) has emerged as a new treatment method to improve mitochondrial dysfunction and alleviate cell impairment. Interest in using extrinsic mitochondrial transplantation as a therapeutic approach has been increasing because it has been confirmed to be effective in treating various diseases related to mitochondrial dysfunction, including ischemia, cardiovascular disease, and toxic damage. To support this application, we conducted an experiment to deliver external mitochondria to retinal pigment epithelial cells treated with oligomeric amyloid-beta (oAß). Externally delivered amyloid-beta internalizes into cells and interacts with mitochondria, resulting in mitochondrial dysfunction and intracellular damage, including increased reactive oxygen species and destruction of tight junction proteins. Externally delivered mitochondria were confirmed to alleviate mitochondrial dysfunction and tight junction protein disruption as well as improve internalized oAß clearance. These results were also confirmed in a mouse model in vivo. Overall, these findings indicate that the transfer of external mitochondria isolated from MSCs has potential as a new treatment method for age-related macular degeneration, which involves oAß-induced changes to the retinal pigment epithelium.


Assuntos
Doenças Mitocondriais , Epitélio Pigmentado da Retina , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Proteínas de Junções Íntimas/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo
8.
Elife ; 122023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085657

RESUMO

Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aß) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aß burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.


Assuntos
Doença de Alzheimer , Cistatinas , Doenças Neurodegenerativas , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cistatinas/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/patologia
9.
Proc Natl Acad Sci U S A ; 120(51): e2316823120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091289

RESUMO

Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD. In this study, we identified LONP1, an ATP-dependent protease in the matrix, as a top Aß42 interacting mitochondrial protein through an unbiased screening and found significantly decreased LONP1 expression and extensive mitochondrial proteostasis deficits in AD experimental models both in vitro and in vivo, as well as in the brain of AD patients. Impaired METTL3-m6A signaling contributed at least in part to Aß42-induced LONP1 reduction. Moreover, Aß42 interaction with LONP1 impaired the assembly and protease activity of LONP1 both in vitro and in vivo. Importantly, LONP1 knockdown caused mitochondrial proteostasis deficits and dysfunction in neurons, while restored expression of LONP1 in neurons expressing intracellular Aß and in the brain of CRND8 APP transgenic mice rescued Aß-induced mitochondrial deficits and cognitive deficits. These results demonstrated a critical role of LONP1 in disturbed mitochondrial proteostasis and mitochondrial dysfunction in AD and revealed a mechanism underlying intracellular Aß42-induced mitochondrial toxicity through its impact on LONP1 and mitochondrial proteostasis.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Camundongos , Animais , Humanos , Proteostase , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/metabolismo , Metiltransferases/metabolismo , Proteases Dependentes de ATP/metabolismo
10.
Cell Mol Life Sci ; 80(12): 351, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930455

RESUMO

Alzheimer's disease (AD) is traditionally considered as a brain disorder featured by amyloid-ß (Aß) deposition. The current study on whether pathological changes of AD extend to the enteric nervous system (ENS) is still in its infancy. In this study, we found enteric Aß deposition, intestinal dysfunction, and colonic inflammation in the young APP/PS1 mice. Moreover, these mice exhibited cholinergic and nitrergic signaling pathways damages and enteric neuronal loss. Our data show that Aß42 treatment remarkably affected the gene expression of cultured myenteric neurons and the spontaneous contraction of intestinal smooth muscles. The intra-colon administration of Aß42 induced ENS dysfunction, brain gliosis, and ß-amyloidosis-like changes in the wild-type mice. Our results suggest that ENS mirrors the neuropathology observed in AD brains, and intestinal pathological changes may represent the prodromal events, which contribute to brain pathology in AD. In summary, our findings provide new opportunities for AD early diagnosis and prevention.


Assuntos
Doença de Alzheimer , Gastroenteropatias , Camundongos , Animais , Doença de Alzheimer/genética , Camundongos Transgênicos , Peptídeos beta-Amiloides/genética , Neurônios
11.
DNA Repair (Amst) ; 131: 103580, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804602

RESUMO

Mutations in Presenilin-1 (PS1) account for over 80 % mutations linked to familial Alzheimer's disease (AD). However, the mechanisms of action of PS1 mutations in causing familial AD are not fully understood, limiting opportunities to develop targeted disease-modifying therapies for individuals carrying PS1 mutation. To gain more comprehensive insights into the impact of PS1 mutations on genome stability, we knocked down PS1 in SH-SY5Y, HMC3 and A549 cells. This revealed that PS1 knockdown (KD) dramatically induces genome instability (GIN) in all cell types, as indicated by the increased incidence of micronuclei, nucleoplasmic bridges and/or nuclear buds. Although amyloid ß (Aß) was able to induce GIN, PS1-KD was associated with decreased expression of Aß in SH-SY5Y cells, suggesting Aß is not the primary cause of GIN in PS1-KD cells. In contrast, inhibiting the PS1 γ-secretase activity by DAPT recapitulated GIN phenotype as seen in PS1-KD cells, indicating that the induction of GIN following PS1 KD can be attributed to the loss of γ-secretase activity. PS1 KD or γ-secretase inhibition markedly sensitizes SH-SY5Y to the genotoxicity of mitomycin C. Interestingly, overexpression of the wildtype PS1 dramatically increased GIN in SH-SY5Y. Collectively, our study demonstrates the potential of PS1 and its γ-secretase activity in maintaining genome stability, highlighting a novel potential link between PS1 loss-of-function or gain-of-function mutations and familial AD through GIN. Several mechanisms by which GIN induced by PS1 dys-expression may contribute to AD are discussed.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Mutação , Instabilidade Genômica
12.
Neurology ; 101(23): e2434-e2447, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37827850

RESUMO

BACKGROUND AND OBJECTIVES: There is an urgent need to identify novel noninvasive biomarkers for Alzheimer disease (AD) diagnosis. Recent advances in blood-based measurements of phosphorylated tau (pTau) species are promising but still insufficient to address clinical needs. Epigenetics has been shown to be helpful to better understand AD pathogenesis. Epigenetic biomarkers have been successfully implemented in other medical disciplines, such as oncology. The objective of this study was to explore the diagnostic accuracy of a blood-based DNA methylation marker panel as a noninvasive tool to identify patients with late-onset Alzheimer compared with age-matched controls. METHODS: A case-control study was performed. Blood DNA methylation levels at 46 cytosine-guanine sites (21 genes selected after a comprehensive literature search) were measured by bisulfite pyrosequencing in patients with "probable AD dementia" following National Institute on Aging and the Alzheimer's Association guidelines (2011) and age-matched and sex-matched controls recruited at Neurology Department-University Hospital of Navarre, Spain, selected by convenience sampling. Plasma pTau181 levels were determined by Simoa technology. Multivariable logistic regression analysis was performed to explore the optimal model to discriminate patients with AD from controls. Furthermore, we performed a stratified analysis by sex. RESULTS: The final study cohort consisted of 80 patients with AD (age: median [interquartile range] 79 [11] years; 58.8% female) and 100 cognitively healthy controls (age 77 [10] years; 58% female). A panel including DNA methylation levels at NXN, ABCA7, and HOXA3 genes and plasma pTau181 significantly improved (area under the receiver operating characteristic curve 0.93, 95% CI 0.89-0.97) the diagnostic performance of a single pTau181-based model, adjusted for age, sex, and APOE ɛ4 genotype. The sensitivity and specificity of this panel were 83.30% and 90.00%, respectively. After sex-stratified analysis, HOXA3 DNA methylation levels showed consistent association with AD. DISCUSSION: These results highlight the potential translational value of blood-based DNA methylation biomarkers for noninvasive diagnosis of AD. REGISTRATION INFORMATION: Research Ethics Committee of the University Hospital of Navarre (PI17/02218).


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA/genética , Estudos de Casos e Controles , Biomarcadores , Genótipo , Proteínas tau/genética , Peptídeos beta-Amiloides/genética
13.
J Inherit Metab Dis ; 46(6): 1114-1130, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477632

RESUMO

The loss of cystathionine ß-synthase (CBS), an important homocysteine (Hcy)-metabolizing enzyme or the loss of PHF8, an important histone demethylase participating in epigenetic regulation, causes severe intellectual disability in humans. Similar neuropathies were also observed in Cbs-/- and Phf8-/- mice. How CBS or PHF8 depletion can cause neuropathy was unknown. To answer this question, we examined a possible interaction between PHF8 and CBS using Cbs-/- mouse and neuroblastoma cell models. We quantified gene expression by RT-qPCR and western blotting, mTOR-bound H4K20me1 by chromatin immunoprecipitation (CHIP) assay, and amyloid ß (Aß) by confocal fluorescence microscopy using anti-Aß antibody. We found significantly reduced expression of Phf8, increased H4K20me1, increased mTOR expression and phosphorylation, and increased App, both on protein and mRNA levels in brains of Cbs-/- mice versus Cbs+/- sibling controls. Autophagy-related Becn1, Atg5, and Atg7 were downregulated while p62, Nfl, and Gfap were upregulated on protein and mRNA levels, suggesting reduced autophagy and increased neurodegeneration in Cbs-/- brains. In mouse neuroblastoma N2a or N2a-APPswe cells, treatments with Hcy-thiolactone, N-Hcy-protein or Hcy, or Cbs gene silencing by RNA interference significantly reduced Phf8 expression and increased total H4K20me1 as well as mTOR promoter-bound H4K20me1. This led to transcriptional mTOR upregulation, autophagy downregulation, and significantly increased APP and Aß levels. The Phf8 gene silencing increased Aß, but not APP, levels. Taken together, our findings identify Phf8 as a regulator of Aß synthesis and suggest that neuropathy of Cbs deficiency is mediated by Hcy metabolites, which transcriptionally dysregulate the Phf8 → H4K20me1 → mTOR → autophagy pathway thereby increasing Aß accumulation.


Assuntos
Cistationina beta-Sintase , Neuroblastoma , Animais , Camundongos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Autofagia/genética , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Neuroblastoma/genética , RNA Mensageiro , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética
14.
Adv Exp Med Biol ; 1423: 289-301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525057

RESUMO

Current hypothesis of Alzheimer's disease (AD) postulates that amyloid ß (Aß) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aß toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In ß-amyloidosis mice, INPP5D was upregulated upon Aß deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Hidrolases Anidrido Ácido/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Microglia/patologia , Placa Amiloide/patologia
15.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511507

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by impaired episodic memory and two pathological lesions: amyloid plaques and neurofibrillary tangles. In AD, damaged neurons and the accumulation of amyloid ß (Aß) peptides cause a significant release of high amounts of extracellular ATP, which acts as a danger signal. The purinergic receptor P2X7 is the main sensor of high concentrations of ATP, and P2X7 has been shown to be upregulated in the brains of AD patients, contributing to the disease's pathological processes. Further, there are many polymorphisms of the P2X7 gene that impact the risk of developing AD. P2X7 can directly modulate Aß plaques and Tau protein lesions as well as the inflammatory response by regulating NLRP3 inflammasome and the expression of several chemokines. The significant role of microglial P2X7 in AD has been well established, although other cell types may also be important in P2X7-mediated mechanisms. In this review, we will discuss the different P2X7-dependent pathways involved in the development of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(8): 701-707, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37515336

RESUMO

Objective To explore the effect of knocking down Rho-associated coiled-coil kinase (ROCK2) gene on the cognitive function of amyloid precursor protein/presenilin-1 (APP/PS1) double transgenic mice and its mechanism. Methods APP/PS1 double transgenic mice were randomly divided into AD model group (AD group), ROCK2 gene knock-down group (shROCK2 group), ROCK2 gene knock-down control group (shNCgroup), and wild-type C57BL/6 mice of the same age served as the wild-type control (WT group). Morris water maze and Y maze were employed to test the cognitive function of mice. Neuron morphology was detected by Nissl staining. Immunofluorescence histochemical staining was used to detect the expression of phosphorylated dynamin-related protein 1 (p-Drp1) and mitochondrial fusion 1 (Mfn1). Western blot analysis was used to detect the expression ROCK2, cleaved-caspase-3 (c-caspase-3), B-cell lymphoma 2 (Bcl2), Bcl2-related protein X (BAX), p-Drp1, mitochondrial fission 1 (Fis1), optic atrophy 1 (OPA1), Mfn1 and Mfn2. Results Compared with AD group mice, the expression of ROCK2 in shROCK2 group mice was significantly reduced; the cognitive function was significantly improved with the number of neurons in the hippocampal CA3 and DG areas increasing, and nissl bodies were deeply stained; the expression of c-caspase-3 and BAX was decreased, while the expression of Bcl2 was increased; the expression of mitochondrial division related proteins p-Drp1 and Fis1 were decreased, while the expression of mitochondrial fusion-related proteins OPA1, Mfn1 and Mfn2 were increased. Conclusion Knock-down of ROCK2 gene can significantly improve the cognitive function and inhibit the apoptosis of nerve cells of APP/PS1 mice. The mechanism may be related to promoting mitochondrial fusion and inhibiting its division.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Apoptose/genética , Proteína X Associada a bcl-2 , Caspase 3 , Cognição , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dinâmica Mitocondrial/genética
17.
Proc Natl Acad Sci U S A ; 120(24): e2303760120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276426

RESUMO

Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aß) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aß deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aß-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aß clearance in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Modelos Animais de Doenças , Amiloidose/patologia , Camundongos Transgênicos , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Proteínas Adaptadoras de Sinalização CARD/genética
18.
Biofactors ; 49(6): 1121-1142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323056

RESUMO

Alzheimer's disease (AD) is a complex form of neurodegenerative dementia. Growing body of evidence supports the cardinal role of sirtuin1 (SIRT1) in neurodegeneration and AD development. Recently, adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark for a wide array of regenerative medicine applications, including neurodegenerative disorders. Therefore, the present study aimed to investigate the therapeutic potential of Ad-MSCs in AD rat model, and to explore the possible implication of SIRT1. Ad-MSCs were isolated from rat epididymal fat pads and properly characterized. Aluminum chloride was used to induce AD in rats, and afterward, a group of AD-induced rats received a single dose of Ad-MSCs (2 × 106 cell, I.V per rat). One month after Ad-MSCs transplantation, behavioral tests were done, brain tissues were collected, then histopathological and biochemical assessments were performed. Amyloid beta and SIRT1 levels were determined by enzyme-linked immunosorbent assay. Whereas expression levels of neprilysin, BCL2 associated X protein, B-cell lymphoma-2, interleukin-1ß, interleukin-6, and nerve growth factor in hippocampus and frontal cortex brain tissues were assessed using reverse transcriptase quantitative polymerase chain reaction. Our data demonstrated that transplantation of Ad-MSCs alleviated cognitive impairment in AD rats. Additionally, they exhibited anti-amyloidogenic, antiapoptotic, anti-inflammatory, as well as neurogenic effects. Furthermore, Ad-MSCs were found to possibly mediate their therapeutic effects, at least partially, via modulating both central and systemic SIRT1 levels. Hence, the current study portrays Ad-MSCs as an effective therapeutic approach for AD management and opens the door for future investigations to further elucidate the role of SIRT1 and its interrelated molecular mediators in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Ratos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
19.
J Agric Food Chem ; 71(26): 10037-10049, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37260315

RESUMO

Osteoporosis and Alzheimer's disease are typical types of dementia in seniors, which share common risk factors. Previous studies have shown that citizens with osteoporosis are more likely than healthy individuals to be at risk of Alzheimer's disease. Citropten, found in Citrus aurantifolia, has been reported to have several pharmacological activities; however, its antiosteoclastogenic activity remains unknown. Here, receptor activator nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, and function in the presence of amyloid beta (Aß) were attenuated by citropten in the RAW 264.7 cell line. The expression of osteoclast specific genes and proteins indicated that citropten pretreatment lowers the MAPK and PLCγ/Ca2+ signaling pathways. Molecular docking simulations revealed that citropten interacts with the active sites of proteins in the calcium signaling pathway, which have negative binding affinities. These findings indicate that, through Aß regulation, the RANKL-induced osteoclast can be suppressed by citropten, suggesting that citropten is a potential candidate for treating osteoclastogenesis-related diseases.


Assuntos
Doença de Alzheimer , Osteoporose , Humanos , Osteogênese , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Diferenciação Celular , Transdução de Sinais , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Osteoporose/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética
20.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290814

RESUMO

Apolipoprotein E4 (ApoE4) is the most important genetic risk factor for Alzheimer's disease (AD). Among the earliest changes in AD is endosomal enlargement in neurons, which was reported as enhanced in ApoE4 carriers. ApoE is thought to be internalized into endosomes of neurons, whereas ß-amyloid (Aß) accumulates within neuronal endosomes early in AD. However, it remains unknown whether ApoE and Aß intersect intracellularly. We show that internalized astrocytic ApoE localizes mostly to lysosomes in neuroblastoma cells and astrocytes, whereas in neurons, it preferentially localizes to endosomes-autophagosomes of neurites. In AD transgenic neurons, astrocyte-derived ApoE intersects intracellularly with amyloid precursor protein/Aß. Moreover, ApoE4 increases the levels of endogenous and internalized Aß42 in neurons. Taken together, we demonstrate differential localization of ApoE in neurons, astrocytes, and neuron-like cells, and show that internalized ApoE intersects with amyloid precursor protein/Aß in neurons, which may be of considerable relevance to AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Peptídeos beta-Amiloides/genética , Doença de Alzheimer/genética , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA